Termination w.r.t. Q of the following Term Rewriting System could be disproven:

Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

head(cons(X, XS)) → X
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(head(x1)) = 2 + 2·x1   
POL(incr(x1)) = x1   
POL(n__incr(x1)) = x1   
POL(n__nats) = 0   
POL(n__odds) = 0   
POL(nats) = 0   
POL(odds) = 0   
POL(pairs) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

tail(cons(X, XS)) → activate(XS)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   
POL(incr(x1)) = x1   
POL(n__incr(x1)) = x1   
POL(n__nats) = 0   
POL(n__odds) = 0   
POL(nats) = 0   
POL(odds) = 0   
POL(pairs) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = 2 + 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ODDSINCR(pairs)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ODDSPAIRS
ACTIVATE(n__nats) → NATS
ACTIVATE(n__odds) → ODDS

The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ODDSINCR(pairs)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ODDSPAIRS
ACTIVATE(n__nats) → NATS
ACTIVATE(n__odds) → ODDS

The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
QDP
                  ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ODDSINCR(pairs)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__odds) → ODDS

The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ODDSINCR(pairs) at position [0] we obtained the following new rules:

ODDSINCR(cons(0, n__incr(n__odds)))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
QDP
                      ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ODDSINCR(cons(0, n__incr(n__odds)))
ACTIVATE(n__odds) → ODDS

The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__incr(X)) → INCR(activate(X)) at position [0] we obtained the following new rules:

ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(n__odds)) → INCR(odds)
ACTIVATE(n__incr(n__nats)) → INCR(nats)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
QDP
                          ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(n__nats)) → INCR(nats)
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ODDSINCR(cons(0, n__incr(n__odds)))
ACTIVATE(n__incr(n__odds)) → INCR(odds)
ACTIVATE(n__odds) → ODDS

The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__incr(n__nats)) → INCR(nats) at position [0] we obtained the following new rules:

ACTIVATE(n__incr(n__nats)) → INCR(n__nats)
ACTIVATE(n__incr(n__nats)) → INCR(cons(0, n__incr(n__nats)))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
QDP
                              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__incr(n__nats)) → INCR(cons(0, n__incr(n__nats)))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ODDSINCR(cons(0, n__incr(n__odds)))
ACTIVATE(n__incr(n__odds)) → INCR(odds)
ACTIVATE(n__incr(n__nats)) → INCR(n__nats)
ACTIVATE(n__odds) → ODDS

The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
QDP
                                  ↳ NonTerminationProof

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__incr(n__nats)) → INCR(cons(0, n__incr(n__nats)))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ODDSINCR(cons(0, n__incr(n__odds)))
ACTIVATE(n__incr(n__odds)) → INCR(odds)
ACTIVATE(n__odds) → ODDS

The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__incr(n__nats)) → INCR(cons(0, n__incr(n__nats)))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ODDSINCR(cons(0, n__incr(n__odds)))
ACTIVATE(n__incr(n__odds)) → INCR(odds)
ACTIVATE(n__odds) → ODDS

The TRS R consists of the following rules:

natscons(0, n__incr(n__nats))
pairscons(0, n__incr(n__odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
natsn__nats
oddsn__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X


s = ACTIVATE(n__incr(n__nats)) evaluates to t =ACTIVATE(n__incr(n__nats))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

ACTIVATE(n__incr(n__nats))INCR(cons(0, n__incr(n__nats)))
with rule ACTIVATE(n__incr(n__nats)) → INCR(cons(0, n__incr(n__nats))) at position [] and matcher [ ]

INCR(cons(0, n__incr(n__nats)))ACTIVATE(n__incr(n__nats))
with rule INCR(cons(X, XS)) → ACTIVATE(XS)

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.