Termination w.r.t. Q of the following Term Rewriting System could be disproven:
Q restricted rewrite system:
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
head(cons(X, XS)) → X
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(head(x1)) = 2 + 2·x1
POL(incr(x1)) = x1
POL(n__incr(x1)) = x1
POL(n__nats) = 0
POL(n__odds) = 0
POL(nats) = 0
POL(odds) = 0
POL(pairs) = 0
POL(s(x1)) = x1
POL(tail(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
tail(cons(X, XS)) → activate(XS)
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(incr(x1)) = x1
POL(n__incr(x1)) = x1
POL(n__nats) = 0
POL(n__odds) = 0
POL(nats) = 0
POL(odds) = 0
POL(pairs) = 0
POL(s(x1)) = x1
POL(tail(x1)) = 2 + 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ODDS → INCR(pairs)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ODDS → PAIRS
ACTIVATE(n__nats) → NATS
ACTIVATE(n__odds) → ODDS
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ODDS → INCR(pairs)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ODDS → PAIRS
ACTIVATE(n__nats) → NATS
ACTIVATE(n__odds) → ODDS
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ODDS → INCR(pairs)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__odds) → ODDS
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ODDS → INCR(pairs) at position [0] we obtained the following new rules:
ODDS → INCR(cons(0, n__incr(n__odds)))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ODDS → INCR(cons(0, n__incr(n__odds)))
ACTIVATE(n__odds) → ODDS
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__incr(X)) → INCR(activate(X)) at position [0] we obtained the following new rules:
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(n__odds)) → INCR(odds)
ACTIVATE(n__incr(n__nats)) → INCR(nats)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(n__nats)) → INCR(nats)
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ODDS → INCR(cons(0, n__incr(n__odds)))
ACTIVATE(n__incr(n__odds)) → INCR(odds)
ACTIVATE(n__odds) → ODDS
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__incr(n__nats)) → INCR(nats) at position [0] we obtained the following new rules:
ACTIVATE(n__incr(n__nats)) → INCR(n__nats)
ACTIVATE(n__incr(n__nats)) → INCR(cons(0, n__incr(n__nats)))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__incr(n__nats)) → INCR(cons(0, n__incr(n__nats)))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ODDS → INCR(cons(0, n__incr(n__odds)))
ACTIVATE(n__incr(n__odds)) → INCR(odds)
ACTIVATE(n__incr(n__nats)) → INCR(n__nats)
ACTIVATE(n__odds) → ODDS
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ NonTerminationProof
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__incr(n__nats)) → INCR(cons(0, n__incr(n__nats)))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ODDS → INCR(cons(0, n__incr(n__odds)))
ACTIVATE(n__incr(n__odds)) → INCR(odds)
ACTIVATE(n__odds) → ODDS
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__incr(n__nats)) → INCR(cons(0, n__incr(n__nats)))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ODDS → INCR(cons(0, n__incr(n__odds)))
ACTIVATE(n__incr(n__odds)) → INCR(odds)
ACTIVATE(n__odds) → ODDS
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
s = ACTIVATE(n__incr(n__nats)) evaluates to t =ACTIVATE(n__incr(n__nats))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
ACTIVATE(n__incr(n__nats)) → INCR(cons(0, n__incr(n__nats)))
with rule ACTIVATE(n__incr(n__nats)) → INCR(cons(0, n__incr(n__nats))) at position [] and matcher [ ]
INCR(cons(0, n__incr(n__nats))) → ACTIVATE(n__incr(n__nats))
with rule INCR(cons(X, XS)) → ACTIVATE(XS)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.